Below is shown in more detail the formal training that I acquired during my education, the information has been structured in a temporary order from the most recent to the most distant. Accompanying this information is a proof of its improvement. This section excludes non-formal training.
Goals
After completing this unit, the student must have acquired a global knowledge about the transport sector, understanding that the issues that affect it today are not limited to only one region.
The student should be aware of the strong link between the current transport sector and petroleum products, as well as the consequences of this heavy dependence on fossil fuels.
The student will have some figures measuring the impact of the transport sector on CO2 emissions and the impact of greenhouse gas emissions on global warming.
The student will have some figures about health and environmental problems, which have led to the creation of regulations that drastically limit the polluting emissions of vehicles. These rules have forced manufacturers to develop new technical evolutions for the current engine. Among these you can find new treatment devices in the exhaust pipes that are significantly more expensive and can be the source of new types of breakdowns.
Finally, the student should understand that alternative propulsion systems, such as hybrid electric vehicles, battery electric vehicles and fuel cell vehicles, have become more credible solutions for the automotive market.
Goals
The student will be able to identify the different types of fuel cells adapted for the transport sector: a PEFC / PEMFC for the propulsion system and a SOFC as a built-in auxiliary power unit.
The student will be able to briefly describe the architecture and components of a PEFC / PEMFC.
The student will be able to briefly describe the principle of operation of a PEM fuel cell.
The student will be aware of the importance of the role played by water in the operation of a PEM fuel cell.
The student will be aware of the technical limitations found in practice.
The student will be aware of the general safety regulations related to work in vehicles where dangerous equipment can be used.
Goals
The student will know the most important technical obstacles solved in order to allow the use of hydrogen as an energy vector.
The student will learn the difficulties related to the use of hydrogen as fuel and whether it is technically possible to store hydrogen in the liquid phase at very low temperatures. Hydrogen is usually stored in the form of gas in a pressure tank.
The student will know the difference between metallic and polymeric gas tanks.
The student will know the safety elements related to pressure gas tanks.
The student will know and be able to recognize the accessories placed in the hydrogen transport networks.
The student will know and be able to recognize the accessories placed in the supply of compressed air to the fuel cell, the so-called oxygen side.
The student will know and be able to recognize the cooling system of the fuel cell.
The student will know and be able to recognize the water management system of the fuel cell.
The student will know and be able to recognize the hydrogen purge system of the fuel cell.
The student will know and be able to recognize the exhaust system of the fuel cell.
Goals
The student will know the types of batteries in vehicles: lead, lithium ion (Li-ion) and nickel metal hydride (Ni-MH).
The student will study the management of the state of the batteries based on battery management systems (Battery Management System or BMS, in English) and will recognize the importance of thermal management in them.
The student will be aware of the fire risk involved in poor battery management.
The student will understand the principles of operation of a DC / DC converter in its operation as a charger for an auxiliary battery of 12 V.
The student will understand the principle of operation of a reducer / elevator converter as intermediate equipment to connect a fuel cell and a high-voltage battery.
The student will understand the principles of operation of a DC / AC converter as equipment to power an electric motor.
The student will understand the principles of operation of an energy recovery system and the role played by the diode bridge in the converter.
The student will understand the electrical signals that come out of the converters and will learn to measure them.
The student will recognize the correct operation of a converter.
The student will understand the operating principles of a synchronous machine and an asynchronous machine.
Goals
The student will understand the evolution of the vehicle’s chassis from the perspective of the modern vehicle with a combustion engine and will discover the progress made in hybrid electric vehicles and fuel cell vehicles.
The student will learn which is the most frequent location of the hydrogen tank and the main accessories of a fuel cell.
The student will learn which is the most frequent location of the fuel cell.
The student will learn which is the most frequent location of the high voltage battery.
The student will learn the location of the outstanding components of the fuel cell, the electric machine, the transmission, etc.
The student will obtain an overview of a fuel cell vehicle chassis and learn the location of the key components.
The student will be able to know where the defective parts are in the event of a fault.
Goals
The student will know the specific work conditions. How is a workshop that works with fuel cell vehicles different?
The student will have an overview of the main safety standards
The student will know the regular maintenance services in a fuel cell vehicle
The student will be able to interpret a block diagram of an area system, as well as analyze it and identify the possible causes of failures
Goals
Identify the main procedures for generating hydrogen.
Know the main sources of hydrogen.
Know the least polluting routes to produce hydrogen.
Goals
Detect when and why a purification process is necessary.
Identify the existing purification technology, how it works, its advantages and disadvantages and the applications for each case.
Be able to select the best purification process, the necessary requirements and the needs of each specific case.
Goals
Understand the storage and distribution needs of hydrogen understood as an energy carrier.
Identify the different hydrogen storage technologies, how they work, the pros and cons and their applications
Be able to choose the best storage system and know the requirements of each storage mode
Choose the best option for hydrogen transport
Goals
Identify the risks of hydrogen at all stages of your life, from production to consumption.
Select the most suitable methods for the detection of faults and hydrogen leakage.
Know the use of the necessary safety elements to be able to operate hydrogen safely and without risks.
Evaluate the risks of hydrogen.
Goals
Identify the difference between regulations and standards.
Justify why a device that works with hydrogen must have a CE mark.
Explain and list the different existing standards and directives on activities, facilities, equipment or materials that work with hydrogen.
List the new standards on hydrogen technologies that are currently being developed.
Recognize the national and international organizations that work on the norms related to hydrogen and its main objectives.
Know the main codes and existing standards in the field of hydrogen technologies.
Goals
Introduce the student to the background and history of the fuel cell in order to get an idea of the evolution of this emerging technology.
Show the student the six main types of fuel cells, explaining their differences and how they work.
Give a brief introduction to electrochemistry and an overview of the techniques used during the manufacturing process of the different types of fuel cells and their components.
Familiarize the student with the various fixed and portable applications of fuel cells.
Goals
Explain to the student what hydrogen is and introduce it into its basic physical properties.
Explain to the student the different methods of hydrogen production and storage, the associated technological obstacles and the way in which it can be distributed to the point of consumption.
Introduce the student in some of the key aspects of the safety of gaseous and liquid hydrogen, in addition to the design standards for the facilities that work with this gas.
Give the student a basic introduction to the definition of detonation and deflagration.
Introduce the student in some cases of studies related to previous incidents involving hydrogen.
Introduce the student to the different fuels that are commonly used in a fuel cell.
Goals
Goals
1.1. Conceptos generales
1.1.1. Historia del hidrógeno
1.1.2. Propiedades del hidrógeno
1.1.3. Obtención del hidrógeno
1.1.4. Almacenamiento – Distribución del hidrógeno
1.1.5. Usos del hidrógeno
1.1.6. Ventajas y desventajas del hidrógeno
1.2. La economía del hidrógeno
1.2.1. ¿Cómo surge?
1.2.2. Tecnologías del hidrógeno
1.2.3. El futuro del hidrógeno
2.1. Estado actual
2.2. Producción de hidrógeno a partir de fuentes renovables
2.2.1. Procesos Electrolíticos
2.2.2. Producción de hidrógeno a partir de biomasa
2.2.3. Producción de hidrógeno mediante ciclos termoquímicos
2.2.4. Producción biofotolítica de hidrógeno
2.2.5. Nuevas tecnologías incipientes
2.3. Producción de hidrógeno a partir de fuentes no renovables
2.3.1. Producción de hidrógeno a partir de gas natural
2.3.2. Producción de hidrógeno por medio de oxidación parcial de hidrocarburos
2.3.3. Producción de hidrógeno a partir de carbón
2.3.4. Técnicas de secuestro y captura de CO2
2.4. Costes de producción de hidrógeno
3.1. Características para el almacenamiento
3.1.1. Sistemas de almacenamiento
3.2. Almacenamiento de hidrógeno gas a presión
3.3. Almacenamiento de hidrógeno líquido
3.4. Almacenamiento de hidrógeno absorbido mediante hidruros metálicos
3.5. Almacenamiento de hidrógeno adsorbido en superficie
3.5.1. Materiales carbonosos y polímeros orgánicos
3.5.2. Polímeros coordinados con metales (MOF)
3.5.3. Zeolitas
3.6. Almacenamiento químico
3.7. Sistemas de distribución de hidrógeno
3.7.1. Distribución de hidrógeno gas comprimido por carretera
3.7.2. Distribución de hidrógeno gas canalizado
3.7.3. Distribución de hidrógeno líquido por carretera
3.7.4. Distribución de hidrógeno líquido por vía marítima
3.7.5. Distribución de hidrógeno líquido por vía férrea
3.8. Estaciones de servicio de hidrógeno
3.8.1. Implantación de hidrogeneras
3.8.2. Dimensionamiento de una hidrogenera
3.8.3. Tipos de hidrogeneras
3.9. Equipos auxiliares
3.9.1. Válvulas
3.9.2. Reguladores de presión
3.9.3. Compresores
3.9.4. Otros equipos
4.1. Historia de las pilas de combustible
4.2. Concepto de una pila de combustible. Estructura básica
4.2.1. Reacciones en una celda de combustible
4.2.2. Estructura básica
4.2.3. Otras características
4.3. Funcionamiento de una pila de combustible
4.3.1. Nociones básicas de termodinámica. Leyes de la termodinámica
4.3.2. Potencial ideal de una pila de combustible
4.3.3. Potencial real de una pila de combustible
4.3.4. El Ciclo de Carnot
4.3.5. Comparativa rendimiento pila de combustible ciclo de Carnot
4.3.6. Funcionamiento real: diseño de pilas y punto de operación
4.4. Tipos de pilas de combustible
4.4.1. Celda de combustible de electrolito de polímero o de membrana de intercambio de protones (PEFC o PEMFC)
4.4.2. Celda de combustible alcalina (AFC)
4.4.3. Celda de combustible de ácido fosfórico (PAFC)
4.4.4. Celda de combustible de metanol directo (DMFC)
4.4.5. Celda de combustible de carbonatos fundidos (MCFC)
4.4.6. Celda de combustible de óxido sólido (SOFC)
4.4.7. Análisis comparativo de las distintas tecnologías de pilas
4.5. Ventajas e Inconvenientes de las pilas de combustible
4.5.1. Alta eficiencia
4.5.2. Sin partes móviles
4.5.3. Funcionamiento continuo
4.5.4. Modularidad
4.5.5. Respuesta rápida
4.5.6. Emisiones
4.5.7. Variedad de combustibles
4.5.8. Durabilidad
4.5.9. Precio
4.5.10. Tecnología en evolución
4.5.11. Sensibilidad hacia venenos catalíticos
4.6. Balance de planta: componentes auxiliares en las pilas de combustible
4.6.1. Compresores, filtros y humidificadores
4.6.2. Reguladores de presión y válvulas
4.6.3. Ventiladores y radiadores
4.6.4. Convertidores de corriente DC/AC o DC/DC
4.6.5. Sistemas híbridos: baterías y condensadores
4.7. Tendencias
4.8. Motores de combustión de hidrógeno
5.1. Usos del hidrógeno: aplicaciones estacionarias
5.1.1. Producción eléctrica a gran escala
5.1.2. Sistemas de microgeneración
5.1.3. Sistemas de alimentación ininterrumpida
5.2. Usos del hidrógeno: aplicaciones móviles
5.2.1. Carretillas elevadoras
5.2.2. Turismos
5.2.3. Autobuses
5.2.4. Movilidad aérea
5.2.5. Barcos y movilidad marítima
5.2.6. Otros vehículos
5.2.7. Perspectivas de futuro en aplicaciones móviles
5.3. Usos del hidrógeno: aplicaciones portátiles
5.3.1. Teléfonos móviles
5.3.2. Ordenadores portátiles
5.3.3. Otros dispositivos
6.1. Comportamiento básico de seguridad: prevención, control de riesgos y recomendaciones
6.1.1. Peligros del uso del hidrógeno
6.1.2. Detección de hidrógeno
6.1.3. Consideraciones básicas de seguridad sobre sistemas de hidrógeno
6.1.4. Ficha de datos de seguridad
6.1.5. Seguridad frente a atmósferas explosivas
6.1.6. Evaluación de riesgos en instalaciones de hidrógeno
6.2. Reglamentación y normativa relativa a las tecnologías del hidrógeno
6.2.1. Normalización
6.2.2. Reglamentación
Realización un trabajo mediante un programa informático, Homer Legacy, para que desarrollar una instalación de hidrógeno.
The following is a more detailed account of the experience gained during chemical engineering studies in University of Granada and in the University of Málaga.
BLOCK 1
BLOCK 2
BLOCK 3
BLOCK 4.
BLOCK 5.
Department of organic chemistry.
Department of Physical Chemistry.
Laboratory of inorganic chemistry.
Laboratory of analytical chemistry.
Estudio de viabilidad.
Technical project.
Introduction: Concepts and fundamental units.
Introduction to renewable energies.
Solar energy.
Buildings and Energy.
Wind power.
Hydroelectric mini-hydro.
Biomass energy.
Other Renewable Energies.
Nuclear energy.
Energy saving.
Storage, Transport and Distribution of Energy.
Seminars.
Lab practices
Introduction: Physics of the environment.
Thermal pollution. Fossil fuels.
Air pollution.
Renewable energy.
Radioactive pollution.
Noise pollution.
Practice program.
Water treatment.
Environmental impact assessment.
Environmental management systems.
Acoustic pollution.
Atmospheric pollution I.
Atmospheric pollution II.
Gaseous effluents.
Practices.
Introduction.
Basic concepts of thermodynamics.
Water steam.
Process of combustion.
Generation of steam.
Steam turbine.
Steam condenser.
Compression of gases.
Gas turbine.
Internal combustion engines.
Cold production.
Refrigerants
A continuación se muestra con más detalle la formación adquirida durante los estudios de bachillerato de ciencias de la naturaleza y salud en el instituto Juan XXIII Zaidín Granada.
The rest of the non-formal training can be found in the knowledge section.